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Outline

• Recap of Key Project Elements

• Highlights since last Workshop

• Ongoing Work, Future Plan, & Challenges
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Project Goal, Objectives and Tasks

3

❖ One Goal
• Improve WRF-Solar model for forecasting 

solar irradiances in cloudy environments 

❖ Four Objectives
• Improve cloud microphysics
• Improve radiative transfer
• Develop analysis package
• Perform model evaluation

❖ Five Tasks
• Four objectives + Data integration

❖ BNL-NREL-SUNY Collaboration
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Executive Summary

• Project well progressing into final stage, adjusted according to no cost extension

• Implemented/tested BNL cloud microphysics (BNL_MP) & quantified improvements

• Upgraded default WRF-Solar based on WRF (V3.6) to a new WRF-Solar based on WRF 
V4.1.2 & quantified the changes

• Upgraded FARMS to FARMS DNI and quantified improvements

• Developed novel analysis framework & demonstrated potentials in data analysis, 
model evaluation, and simultaneous forecasts of GHI, DNI and DHI

• Developed/implemented parameterization for turbulent entrainment-mixing  

• Developed a proto-type framework for model calibration (auto-tuning)

• Two publications (iScience, 2020; Solar Energy, 2021) and more are in preparation;  10+

conference (AMS and AGU) presentations
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Highlight 1: from FARMS to FARMS-DNI

• FARMS has been upgraded 
to consider circumsolar 
region (FARMS-DNI).

• Details reported in iScience 
paper.

• Offline and online 
evaluations indicate 
potentially significant 
improvement in forecasting 
DNI (next).
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Observational Evaluation of FARMS-DNI

• Beer law underestimates DNI

• Empirical DISC overestimates DNI

• FARMS DNI improves DNI substantially

New parameterization for FARMS-DNI has been developed, implemented 
into NREL WRF-Solar, and evaluated (next slide).
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FARMS-DIN Improves WRF-Solar DNI significantly.

• We analyzed statistical metrics 
computed with all available data for the 
period of 01/01/2018 – 03/31/2018. 

• Averaged data over 18 ARM-SGP sites 
were considered to evaluate model 
performances.

• There is an improvement from the 
FARMS-DNI with 25% decrease of RMSE 
and 21% decrease of MAE compared to 
the Lambert law (used in FARMS). 

• Refine and test it in BNL WRF-Solar, together with the other upgrades.
• Great potentials to improve solar energy forecast & beyond. 

.
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Highlight 2: from Thom to BNL Microphysics

• Aerosol-cloud interactions with dispersion effect

• Largely analytical with clear physics

• Turbulent entrainment-mixing processes (ongoing)

• Focus on those either poorly 
represented or not represented 
at all

• Consideration of relative 
dispersion in effective radius and 
autoconversion

• Consideration of turbulence 
effect via condensation rate 𝛽𝑐𝑜𝑛
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Performance of BNL Vs. Thom Cloud Microphysics

• Positive y means 
improvement

• BNL_MP  improves 
new WRF-Solar up to 
60%.

• Smaller improvement 
for Cu case due to 
smaller cloud fraction 
and water content

• Microphysics effect is 
coupled with other 
model components 
including different 
versions 

• Cloud-dependent

• Additional effect from 
entrainment-mixing
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1、Introduction

Homogeneous

Different mechanisms affect droplet size distribution differently, including any 
possible spectral shape in between the two idealized extremes. 

Strong Turbulence Weak Turbulence

Inhomogeneous

Representation of Turbulent Entrainment-Mixing Effect

𝜓 = 𝑎𝑁𝐿
𝑏,      𝑏 = −0.0017𝑎 + 0.1722
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Effects of Turbulent Entrainment-Mixing Processes

• Contrasting influences in evaporating vs non-evaporating grids > 

Compensation between cloud edges & core? Dependence on cloud types?

• Effects of energy dissipation rate, entrained dry air relative humidity, & shallow 

cu parameterizations.

Cu

Sc
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Highlight 3: Novel Analysis Framework

• Based on relationships between dimensionless parameters from 
total and direct irradiances.

• Separation of cloud fraction and albedo effects on solar irradiances.
• A hierarchy of physics-informed persistence models to forecast GHI, 

DNI and DHI.
• Potentials in integrating data-driven models with physical (WRF-

Solar) forecast (ongoing)

Solar Energy, Volume 215, Pages 252-265. https://doi.org/10.1016/j.solener.2020.12.045 
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Analysis Framework for Improving Forecast

(Diagne et al., 2013)

“Improve data-driven forecast”

Analysis Framework
“Improve WRF-Solar”
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Physics-Informed Forecasting Hierarchy
 1 

Table.1 A summary of cloud-radiation relationships at different levels of approximation 2 

Hierarchy 

Level 
Persistent Predictor Cloud Physics Incorporated 

1st level 𝐹𝑎𝑙𝑙 ,𝐺𝐻𝐼
𝑑𝑛 ,𝐹𝑎𝑙𝑙 ,𝐷𝑁𝐼

𝑑𝑛 ,𝐹𝑎𝑙𝑙 ,𝐷𝐻𝐼
𝑑𝑛  No direct cloud physics 

2nd level K or RCRFs Overall cloud effects 

3rd level R 
Approximate separation of radiative effects 

from cloud albedo and cloud fraction 

4th level αr，f 
Clear separation of radiative effects from 

cloud albedo and cloud fraction 

 3 

• 4 levels of persistence forecast model
forecasting GHI, DNI and DHI; 

• The Higher the model level the 
clearer the representation of cloud 
radiative effects;

• Evaluated with decade-long obs. at 
ARM SGP (1998-2014); 

• Higher level models perform better 
than lower-level models;

• Paper published in Solar Energy, 2021

PE Score Sref = (1 −
𝑃𝐸𝑚𝑜𝑑𝑒𝑙

𝑃𝐸𝑟𝑒𝑓
) × 100%



energy.gov/solar-office

Physics-Informed Vs. Machine Learning Models 

• Percent skill score relative 
to smart persistence 
model.

• Improvement from 
physics-informed models 
is comparable to that of 
directly applying machine 
learning models, but much 
more computationally 
efficient.

• Value using both GHI and 
DNI in forecasting because 
they, together, contains 
cloud fraction and albedo 
effects. 
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Highlight 4: Framework for “Auto-tuning” Parameters

• Needed for objectively “tuning” 
parameters following cloud conditions.

• Challenges 

-- Computational cost (ML emulators & 
streaming & efficient parameter sampling)

-- Multiple parameters & cost functions: Pareto 
optimality, e.g., optimizing multiple parameters 
to impove GHI and DNI forecasts.

-- Compensating errors in WRF-Solar & role of 
cost function

-- Smart cost functions (analysis framework)

-- Integration with WRF-Solar suite 16

WRF-Solar: y = F(x, parameters); Seek 
set of optimal parameters by 
minimizing the cost function(s). 
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Still room for  
improvement by 
optimizing 
parameters that 
depends likely on 
cloud conditions.
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Ongoing Work and Future Plan

• Freeze WRF-Solar upgrades for ARBITER forecast.

• Test/refine WRF-Solar with all parameterization upgrades.

• Continue developing/testing entrainment-mixing 
parameterization

• Continue developing/testing auto-tuning framework. 

• Summarize/analyze results for publication.

• Finalize the deliverables.  

Thanks for your attention!

lyg@bnl.gov  
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Backup slides
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Radiation Tree for Studying Cloud Effects on Radiation
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Relative Dispersion of Cloud Droplet Size Distribution  

e = 0.3 e = 1e = 0

N
u

m
b

er

Radius

• Relative dispersion e is the ratio of standard deviation to the mean radius
• Relative dispersion increases from left to right in above figures. 
• Note the striking difference between  the three diagrams, which all have the 

same water content and droplet concentration
• Most microphysics schemes assume constant relative dispersion 
• A key feature of BNL microphysics is to explicitly relative dispersion

Critical radius next 
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~
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Valley of Death and Drizzle Initiation

Rain initiation has been a persistent puzzle in cloud physics 

since 1940s. Again missing factors are turbulence & evaporation.

Fundamental 

difficulties: 

• Spectral 

broadening 

• Embryonic 

Raindrop 

Formation
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Mountain of Life: New Rain Initiation Theory

The new rain initiation theory (kinetic potential theory, KPT) combines statistical 

barrier crossing with the systems theory for droplet size distributions (McGraw & Liu, 

Phys. Rev. Lett., 2003; Phys. Rev., 2004), and provides physics for threshold.

Statistical 

Barrier-Crossing

Critical Radius

Systems theory

Collection
Condensation

Evaporation
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Theoretical Autoconversion Schemes

AGU/AP

S 

highlights

BNL

Bulletin

8/ 5/2005

Combining the new rain initiation theory with theory for collision and coalescence of cloud 

drops leads to the BNL autoconverison parameterizations (Liu & Daum, JAS, 2004; Liu et al., 

GRL, 2004, 2005, 2006, 2007, 2009): dispersion and critical radius

Kessler scheme

e = Dispersion

Note the importance of dispersion!
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Technical Accomplishments (T6.1): Autoconversion Rate

• Autoconversion rates increase 
with increasing relative 
dispersion, thus the radiative 
and cloud properties are more 

sensitive to 𝛽𝑐𝑜𝑛 when ε is 
large.

• The perturbations of simulated 
properties in the Cu case is due 
to the perturbations in the 
autoconversion rates.

• The sensitivity of solar 
irradiance is not only 
determined by autoconversion, 
but also by cloud fraction, cloud 
droplet activation, evaporation 
etc.
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Highlight 2: from Thom to BNL Microphysics

𝑃L = 1.1 × 1010 ×
൯Γ 𝜀−2 Γ 𝜀−2 + 3, 𝑥𝑐𝑞 Γ(𝜀−2 + 6, 𝑥𝑐𝑞

)Γ3(𝜀−2 + 3
𝑁𝑐
−1𝐿𝑐

3

𝑃N = 1.1 × 1010 ×
൯Γ 𝜀−2, 𝑥𝑐𝑞 Γ(𝜀−2 + 6, 𝑥𝑐𝑞

)Γ2(𝜀−2 + 3
𝐿𝑐
2

• Aerosol-cloud interactions with dispersion effect

• Explicit consideration of e and condensation rate 𝛽𝑐𝑜𝑛 (turbulence)

• Turbulent entrainment-mixing processes (ongoing)

𝞮 = 1 − 0.7 exp(−𝞪𝑁𝑐), 𝞪 = 0.003

𝑥𝑐𝑞 = [
(1 + 2𝜀2)(1 + 2𝜀2)

𝜀6
]1/3𝑥𝑐

1/3 𝑥𝑐 =
𝜌𝑤𝜈

𝜅1/2
𝛽𝑐𝑜𝑛

1/2 𝑁𝑐
2/3

𝐿𝑐
−2

• Effective radius considering relative dispersion e

• Autoconversion considering relative dispersion e
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We will perform similar analysis for corresponding observational data to 
facilitate model evaluation and shorter-range forecasting as well. 

• Radiation-cloud 
relationships

• Cloud regimes

• Model/process emulator

• Streaming analysis

Task 3: Innovative Analysis Package
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Prototype Auto-Tuning Framework: Two-Step Downhill 

• The convergence of downhill 
simplex (DS) method strongly 
depends on the quality of the initial 
values due to its local optimization 
ability.

• 1st step: select the three good initial 
values with lower tuning metrics by 
Latin Hypercube Sampling.

• 2nd step: DS searches the optimal 
solution by changing the shape of a 
simplex, which represents the 
optimal direction and step length.

y = F(x, parameters)

WRF-Solar

Output (GHI,
DNI)

Obs (GHI, DNI)

Cost Function

Sampling
Parameters

Tuning
parameters

Cost Function

1st : select good initial values

2nd : downhill simplex optimization

27
Seek model parameters to minimize the cost function based 
on model prediction Y and measurements. 
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Test case: Tuning relative dispersion and condensation 
rate constant
parameter describtion Default Range

vdis Relative dispersion of cloud 
droplet spectrum

0.1 0.01 - 1.4

beta_con Condensation rate constant 1.15e23 1.02e20 – 1.67e24

Cost Function:

28

𝜒1 =
1

2

)𝑚𝑠𝑒(𝑥𝑚
𝐷𝐼𝑅, 𝑥𝑜

𝐷𝐼𝑅

)𝑚𝑠𝑒(𝑥𝑟
𝐷𝐼𝑅, 𝑥𝑜

𝐷𝐼𝑅 +
)𝑚𝑠𝑒(𝑥𝑚

𝐷𝐼𝐹 , 𝑥𝑜
𝐷𝐼𝐹

)𝑚𝑠𝑒(𝑥𝑟
𝐷𝐼𝐹 , 𝑥𝑜

𝐷𝐼𝐹

𝜒2 =
1

2

)𝑚𝑠𝑒(𝑥𝑚
𝐷𝐼𝑅, 𝑥𝑜

𝐷𝐼𝑅

)𝑚𝑠𝑒(𝑥𝑟
𝐷𝐼𝑅, 𝑥𝑜

𝐷𝐼𝑅 +
)𝑚𝑠𝑒(𝑥𝑚

𝑇𝑂𝑇 , 𝑥𝑜
𝑇𝑂𝑇

)𝑚𝑠𝑒(𝑥𝑟
𝑇𝑂𝑇 , 𝑥𝑜

𝑇𝑂𝑇

where mse denotes the mean square error; 𝑥𝑚is the model outputs; 𝑥𝑜
is the corresponding observation; 𝑥𝑟 is model outputs from the control 

simulation with the default parameter values; subscripts DIR, DIF, and 

TOT denote the direct, diffuse and total irradiance, respectively. 
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Influence of Different Cost Functions

29

𝜒2 =
1

2

)𝑚𝑠𝑒(𝑥𝑚
𝐷𝐼𝑅 , 𝑥𝑜

𝐷𝐼𝑅

)𝑚𝑠𝑒(𝑥𝑟
𝐷𝐼𝑅, 𝑥𝑜

𝐷𝐼𝑅 +
)𝑚𝑠𝑒(𝑥𝑚

𝑇𝑂𝑇 , 𝑥𝑜
𝑇𝑂𝑇

)𝑚𝑠𝑒(𝑥𝑟
𝑇𝑂𝑇 , 𝑥𝑜

𝑇𝑂𝑇

• Optimal pair of relative 
dispersion and condensate rate 
(star) improves  direct, total, and 
diffuse irradiances compared to 
the default pair (cross) 

• Compensating errors between 
direct and diffuse irradiances & 
trade-off of Pareto optimization.

• Sensitivity to cost function; on-
going work with the 
dimensionless variables (B1, B2)

• Reduce computational cost with 
streaming ML emulators.
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Task 4: Model Evaluation Framework

❖WRF-Solar Testbed Suite
Adapt BNL Fast Physics Testbed:

• WRF-Solar

• WRF-Solar LES

• Single Column WRF-Solar (SWRF-Solar)

❖ Evaluation Metrics Suite
• Conventional metrics (e.g., RMSE)

• Relative Euclidean distance

• Taylor diagram

• New analysis package

In addition to quantifying the model-observation differences, our evaluation 
framework is designed to detect physical causes underlying the model-observation 
differences and to test new parameterizations. 
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WRF-Solar Suite Configurations

Nested LES SCM

Boundary condition NARR VARANAL VARANAL

# of domains 2 1 1

Size of (inner) domain 90km 14.4km -

Horiz grid size (inner domain) 3km 100m 3km

# of vertical levels 50 227 50

Model top 100mb (~16000m) 14800m 14800m

Microphysics Thompson scheme Thompson scheme Thompson scheme

Radiation (SW / LW) RRTMG / RRTMG RRTMG / RRTMG RRTMG / RRTMG

Boundary layer MYNN - MYNN

Land surface model RUC VARANAL* VARANAL*

Cumulus parameterization GF shallow cumulus - GF shallow cumulus

Table 1.1. WRF-solar configurations for the baseline simulation (Nested), large eddy

simulation (LES), and single column model (SCM)
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Summary of 8 Cases (5 Cu and 3 Sc)

Cumulus Cases Stratocumulus Cases

All Cases • Larger errors cancel out in direct and diffuse irradiances leading to smaller error in total irradiance.
• Larger errors in simulated cloud properties than in irradiances
• Large errors in irradiances during the transition of the clouds
• Possible error compensation from incorrect cloud structures 

Regime 
dependent

• Small cloud fraction, Smaller sensitivity to 
microphysics than Sc

• Better simulated cloud structures (2D cloud 
fraction) in LES

• Overestimated direct irradiance and 
underestimated diffuse irradiance

• Better simulated direct irradiance than 
diffuse irradiance

• Large cloud fraction, Larger sensitivity to 
microphysics than Cu

• Better simulated cloud structures (2D cloud 
fraction) in nested WRF-Solar

• All simulations tend to underestimate the 2D 
cloud fraction (therefore the deeper clouds in 
LES results in better irradiances)

• Better simulated diffuse irradiance than direct 
irradiance

Case 
dependent

• All short cases shows small sensitivity to 
microphysics, while the microphysics 
sensitivity start from the 2nd day of 
simulation of the 60 h case.

• Performance of LES, Nested WRF-Solar and 
SCM varies from case to case
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Separation of Cloud Radiative Effects

Cu

Total Direct Diffuse• Simulated Irradiance vs 
simulated cloud properties

• New measures allow separation 
of clearness index error into 
cloud fraction and albedo errors 
& are more informative.

• Underestimated cloud 
fraction/albedo leads to 
overestimated total and direct 
irradiances but underestimated 
diffuse irradiance.

• Diffuse and direct irradiances are 
more problematic & error 
compensation.

• Similar results for other clouds
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FARMS and FARMS-DNI

FARMS, the Fast All-sky Radiation Model for Solar applications, is a physics-based 
radiative transfer model that efficiently (>500 times faster than the state-of-the-art 
models) computes all-sky solar radiation. 

FARMS and the extension models have been used to support multiple DOE-sponsored 
projects on solar resource assessment and forecasting (e.g., WRF-Solar, NSRDB).

FARMS-DNI model provides a 
computationally efficient physics-based 
solution of DNI that considers the 
circumsolar region and improves DNI 
forecast in cloudy environment.
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Lookup Table of Cloud Transmittance

➢ 32-stream DISORT is used to compute the lookup table.
➢ 9.1☓108 calculations, each takes ~1-2 seconds.
➢ 30-120 years by a single CPU.

97
wavelength

2
Cloud phase

39
Cloud 

Optical 
Thickness

28
Cloud 

Particle Size

43
Solar Zenith 

Angle

100-200
Viewing 

Direction



energy.gov/solar-office

ML Models vs. Physics-informed Persistence Models

• Using GHI and DNI further 
improves ML models 
compare to using GHI or 
DNI (top panel).

• Multi-variate ML models 
are better than physics-
informed persistence 
models (bottom panel)

• Writing 2nd paper for SE

• Better integration of ML 
with physics.


